Spinor spherical harmonics

Special functions on a sphere

In quantum mechanics, the spinor spherical harmonics[1] (also known as spin spherical harmonics,[2] spinor harmonics[3] and Pauli spinors[4]) are special functions defined over the sphere. The spinor spherical harmonics are the natural spinor analog of the vector spherical harmonics. While the standard spherical harmonics are a basis for the angular momentum operator, the spinor spherical harmonics are a basis for the total angular momentum operator (angular momentum plus spin). These functions are used in analytical solutions to Dirac equation in a radial potential.[3] The spinor spherical harmonics are sometimes called Pauli central field spinors, in honor to Wolfgang Pauli who employed them in the solution of the hydrogen atom with spin–orbit interaction.[1]

Properties

The spinor spherical harmonics Yl, s, j, m are the spinors eigenstates of the total angular momentum operator squared:

j 2 Y l , s , j , m = j ( j + 1 ) Y l , s , j , m j z Y l , s , j , m = m Y l , s , j , m ; m = j , ( j 1 ) , , j 1 , j l 2 Y l , s , j , m = l ( l + 1 ) Y l , s , j , m s 2 Y l , s , j , m = s ( s + 1 ) Y l , s , j , m {\displaystyle {\begin{aligned}\mathbf {j} ^{2}Y_{l,s,j,m}&=j(j+1)Y_{l,s,j,m}\\\mathrm {j} _{\mathrm {z} }Y_{l,s,j,m}&=mY_{l,s,j,m}\;;\;m=-j,-(j-1),\cdots ,j-1,j\\\mathbf {l} ^{2}Y_{l,s,j,m}&=l(l+1)Y_{l,s,j,m}\\\mathbf {s} ^{2}Y_{l,s,j,m}&=s(s+1)Y_{l,s,j,m}\end{aligned}}}

where j = l + s, where j, l, and s are the (dimensionless) total, orbital and spin angular momentum operators, j is the total azimuthal quantum number and m is the total magnetic quantum number.

Under a parity operation, we have

P Y l , s j , m = ( 1 ) l Y l , s , j , m . {\displaystyle PY_{l,sj,m}=(-1)^{l}Y_{l,s,j,m}.}

For spin-1/2 systems, they are given in matrix form by[1][3][5]

Y l , ± 1 2 , j , m = 1 2 ( j 1 2 ) + 1 ( ± j 1 2 ± m + 1 2 Y l m 1 2 j 1 2 m + 1 2 Y l m + 1 2 ) . {\displaystyle Y_{l,\pm {\frac {1}{2}},j,m}={\frac {1}{\sqrt {2{\bigl (}j\mp {\frac {1}{2}}{\bigr )}+1}}}{\begin{pmatrix}\pm {\sqrt {j\mp {\frac {1}{2}}\pm m+{\frac {1}{2}}}}Y_{l}^{m-{\frac {1}{2}}}\\{\sqrt {j\mp {\frac {1}{2}}\mp m+{\frac {1}{2}}}}Y_{l}^{m+{\frac {1}{2}}}\end{pmatrix}}.}

where Y l m {\displaystyle Y_{l}^{m}} are the usual spherical harmonics.

References

  1. ^ a b c Biedenharn, L. C.; Louck, J. D. (1981), Angular momentum in Quantum Physics: Theory and Application, Encyclopedia of Mathematics, vol. 8, Reading: Addison-Wesley, p. 283, ISBN 0-201-13507-8
  2. ^ Edmonds, A. R. (1957), Angular Momentum in Quantum Mechanics, Princeton University Press, ISBN 978-0-691-07912-7
  3. ^ a b c Greiner, Walter (6 December 2012). "9.3 Separation of the Variables for the Dirac Equation with Central Potential (minimally coupled)". Relativistic Quantum Mechanics: Wave Equations. Springer. ISBN 978-3-642-88082-7.
  4. ^ Rose, M. E. (2013-12-20). Elementary Theory of Angular Momentum. Dover Publications, Incorporated. ISBN 978-0-486-78879-1.
  5. ^ Berestetskii, V. B.; E. M. Lifshitz; L. P. Pitaevskii (2008). Quantum electrodynamics. Translated by J. B. Sykes; J. S. Bell (2nd ed.). Oxford: Butterworth-Heinemann. ISBN 978-0-08-050346-2. OCLC 785780331.


  • v
  • t
  • e